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Summar

In this paper, we consider the problem of estimation of dispersion
effects of factors in replicated factorial experiments under a general
dispersion model. We also characterize the arrays so that the estimation
of dispersion effects is possible. The problem considered in this paper
arises in quality control studies and the methodologies are applicable to

industrial experiments.
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1. Introduction

We consider a 2™ factorial experiment under a completely randomized
design. The runs are denoted by Ei = (til""’tiu""’tim) where tia is
the level of the factor u in the run {, tiu = 0,l; u=1,.00,m;
i=1,s00,n. Let T (nxm) be a matrix whose ith row is t;, i = 1,...,n.
The matrix T is called the array (or the design) for the experiment. We
take r1(> 1) observations for the ith (i = l,...,n) run of the experi-
ment. The experiment just described is very common in quality control
studies (see Taguchi and Wu 1985) where a major goal is to evaluate the
sensitivity of the manufacturing process to noise. The runs Ei,
i=1,e4s,n, in T are called the level combinations of m control
factors. An important problem is to find an optimum combination of
levels of control factors in view of reducing the process variability due
to nolse factors. A list of noise factors likely to affect the process
variability is first made. Various level combinations of noise factors
that provide a good representation of noise are then selected. For the

ith run t!, we collect r level combina-

L9 observations corresponding to r

i i

tions of noise factors. The 4 observations for a run in T are called £y
replicated observations. The variability in the ry replicated observa-

tions for the ith run Ef

1 is attributed to the process variability due to

noise in the experiment.

Let yij be the jth observation on the ith run Ei in T,
j = l,ooo,ti, i = l,ooo,n- We denote x- (yll,ao-,ylrl;ooo;ynl,cc-ynrn)'-
There are N = ryte.s+r, observations in y. The model for the experiment

is
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E(y) = X8, (1)
V(y) = I, (2)

where X(Nxp) is a known matrix that depends on the array T, B(pxl) is a
vector of factorial effects considered in the experiment. The matrix I
i{s an unknown diagonal matrix where the diagonal elements for all obser-
vations on Ei = (til,...,tim] are equal to oz(til”"’tim) = cz(Ei).

The parameters Uz(til""'ciu = l,...,cim) are called the dispersions of
the factor u(u = 1l,...,m) at level 1. The parameters oz(til""’tiu =
0,...,tim) are called the dispersions of the factor u(u = l,...,m) at

level 0. We are interested in comparing the dispersions at level ! with
the dispersions at level O for every factor. For this purpose, we define
the dispersion effect of the factor u(u = 1l,...,m) as

)Oz(t“,...,tiu = 1eee,ty )

Ze(e = lyeee,t

110000ty im

2
-zd(til’...'tiu = 0’...’tim)° (til’...’tiu = O,ol.,tim), (3)

= 1"..’tim) and d(til’...’t = 0,-0-,tim} are known

where C(til'...’t

iu iu

constants with Zcftil,...,tiu = l""'tim] = Zd(til,...,tiu = 0""’tim]
= l. The dispersion effect is a contrast of the dispersions at level 1
and level 0. 1If the dispersion effect is greater than 0, we then prefer
level 0 over level 1 of the factor. If the dispersion effect is less
than 0, we then prefer level 1 over level 0. 1If the dispersion effect
is zero then levels 1 and O are equally preferable. Notice that the
preference of one level over the other level depends on the dispersion
effect considered or in other words, on the values of ¢'s and d's. The
linear functions of dispersion effects of the form (3) are used in
measuring how the dispersion effect of one factor varies at different

levels of the other factors [see Box and Meyer (1986), Srivastava
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(1987)]. 1In this paper we consider the problem of estimating meaningful
dispersion effects of the factors. We also characterize arrays so that
the estimation of meaningful dispersion effects is possible. Although in
(3) we use the contrast of level 1 and level O dispersions for the
dispersion effect, one may also take the ratio of two dispersions
considered (see Box and Meyer (1986)). The use of any of these
definitions will however give the same conclusion since each of them
compares the dispersions at level 1 and level Q. We assume throughout
the paper that for the fitted model to the data there is no significant
lack of fit.

The dispersion model and dispersion effects are considered in the
work of Taguchi (see Taguchi and Wu 1985), Box (see Box and Meyer 1986),
Kacker and Shoemaker (1986), Phadke (1986), Ghosh (1987), Srivastava
(1987), Nair and Pregibon (1988). This paper makes a further
contribution to this area of research.

2. Estimation of Dispersion Effects.

We choose a factor out of m factors and present estimators of some
meaningful dispersion effects of the chosen factor. For clarity, we do
not introduce any notation for the chosen factor. We define the
following indicator variable for 1 = l,...,n, so that it is possible to
identify the runs at which the factor appears at level ! and level 0,
respectively:

[ 1 1if the level of the factor in the ith run is 1,
61 0 1if the level of the factor in the ith run is O.

A meaningful dispersion effect of the form (3) is




5=
n n
rs0(e)) £ (1-8,)a%(g))
2 2 i=] i=]
o?(1) - 0%(0) = - . (4)
n n ( )
L8 t (1-6
j=1 1 f=1 1

The dispersion effect (4) is the difference between the average dis-
persions at level 1 and level O of the chosen factor. Let ;i be the
mean of all observations on the ith run, { = 1,...,n. The sum of squares

of pure error is

n ti( - )2 n Ti - 2 n Y1 -\
SSPE = £ L (y,, -y = I 28 (yia=ye) + T (1 =68 )yq =y)5
pa13=1 M f=1=1 1171 i=1j=1 17y

We now write

Si(O) " . (5)

T (1—61)(ri -1)

It can be seen that E(Si(l) - Si(O)) - 02(1) - 02(0). Thus Sf(l) -
Si(O) is an unbiased estimator of oz(l) - 02(0).

It is important to estimate the dispersion effect which is a simple
contrast of dispersions at levels 1 and O, or in other words, to estimate
az(tl,...,cu_l, L, tygppreessty) = oz(tl,...,tu_l, 0, typpseessty) for a
(tl""’tu-l'tu+l""’tu)' This i. possible if both runs (tl""tu-l’

1, tu+l""’tm) and (tl""'tu-l’ o, tu+l""’tm) appear as rows in T.

Suppose that both runs are present in T and they appear in the rows il
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2
i, of T. The unbiased estimator of the parameter of interest o (Ei ) -

1
2
o (t' ) is
r r
i i
1 = 2 =
‘z(yij-yi)2 Z(yij-yilz
j=1 11 1 §=1 12 2 )
fI}i -1) T}i -1)
1 2
Suppose that the runs (ti ,-oo,t&_l, l, t&+1’l'.,té) and (ti,oc.,t&_l,

9, t&+1,...,té] also appear in the rows 13 and ié of T. We then un-
2
biasedly estimate the dispersion effect Oz(gi ) -0 (t{ ). The linear
3 4
functions of the dispersion effects %—[Oz(Ei ) - 02 t{ )]
1 2

+1 o“(t! - o (t! an 1 G ' - g°(t! -1 it -
AGCRERACRIE PG CRRRACRIERICCR

oz[ﬁfa)] are very important in terms of the "main effects" and the
"interactions" considered in Box and Meyer (1986), Srivastava (1987).
Note that the first linear function is in the form (3) and 1is thus again
a dispersion effect of the factor chosen. The second linear function is
not of the form (3) but a contrast of two dispersion effects of the form
(3). There is a possibility for an array T that the unbiased estimation

of cz(t' ) - oz(t' ) is not at all possible for any (t NS ST
=i —-12 1 u-l

1

tu+l""’tm) but the unbiased estimation of 02(1) - 02(0) is still pos~-

sible. This however is not a desirable situation and the corresponding
ing array T is not well chosen. In section 3 we discuss this issue in
detail.

We denote J, s the vector of observations corresponding to the runs
with the chosen factor at level u, u = 1,0. Notice that y consists of
Yy and y5. Let X, be the submatrix of X corresponding to y,, I, be the
submatrix of I corresponding to Ly iu be the ordinary least squares

fitted values for Yu* We have p A xu(x'x)'lx'z, u=1,0. We denote

Y ——— r-—t-—v

~/
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- . = ™~ 2 - tet = . v SZ
Yo zu ruz, Rank ru Vu and VuSZ(u) z_turuz, u 1,0, Thus a 2(u)
is the sum of squares of the ordinary least squares residuals at level u

of the chosen factor.
Theorem l. We have for u = 1,0,

2
a. E(Vusz(u)) = Trace (rurdzurur& + rurzl-u)z(l—u)r(l-u)td)’

b. E(Vusi(u)) = Trace rutdzurur&, if and only if rurzl—u) = 0, i.e.,

' = .
£ 0
Proof. Since we have assumed no significant lack of fit for the fitted

nodel, we get for u = 1,0, E(zfr&ruz) = Trace r)r I = Trace r I rje It

u
can be be seen that the submatrix of Ty corresponding to L and L(1-u)
are r r' and r r; + Thus we have r T r' = r r' L r r'
uu u (1=u) u u uu uuu

L ] 1 ]
+ rur(l-u)z(l-u)r(l-u)ru' Hence the part a of Theorem 1 is true. Since

' pX ' :
Trace rur(l—u) (1-0)F (1-u)u is the sum of squares of all elements in

, 1/2
T (=) (1)

diagonal elements positive, the part b of Theorem 1 is true. This

/2

is a diagonal matrix with all
1-u)

and furthermore Eé

completes the proof of the theorem.

It follows from Theorem 1 that in case rlrb = 0, the unbiased estimator

of the dispersion effect

L] L} 1 ]
Trace rlrlilrlrl ) Trace roroiororo -
9
L
Trace rlri Trace 9T

is (Vlsg(l)/Trace rlri) - (VOS§(0)/Trace toté)- The dispersion effect
(7) is of the form (3).

When rlrb # 0, two vectors of residuals 4 and roy at levels 1 and
0 of the factor are correlated under the model (1-2). We present a

vector riy_uya¥ of "adjusted residuals" at level (l=-u) of the factor,
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adjusted werost. ryy (u = 1,0) so that ry y and r, y are uncorrelated
under (1-2). Let rul(vuxN) be a submatrix of r, 8° that Rank L Vu,

u=1,0. We write for u = 1,0,

- - [ [} ‘1
T(1-u)a = r(l-—u)(I rul(rulrul) rul]' (8)

L = M = *
It can be seen that Ta1t(1 0 and hence CaT(1-u)a 0. It can be

-u)a
checked that Rank T(leu)a = ((N-p) - Vu) = v(l-u)a (say). We have for

u = 1,0,

' ' -1 '
Tmnyal = Te-oy (L 7t (it ) fan) Feny Loyt (9)

Thus for u = 1,0, r a_z_depends on y only through z{l-u) and, more-

(1-u)
over, Cov(roaz, rlal) = 0, i.e., they are uncorrelated under (l1-2). Let

- L 1 4 \] :
r(l-u)al be a submatrix of r(l—u)(I rul(rulrul] rul)r(l—u) with rank
V(l-u)a’ u = 1,0, We now have the sum of squares of the set of linear

functions r .y [see Scheffé 1959] as

= yv'y! v -1
ss(rual-“‘:’u) zutual[rualrual] Tuatdy’ (10)
with d.f. vua’ u=1,0, We define for u = 1,0,

2 =

53 (W) = [ss(r 12,07V, ] (11)

It can be seen that for u = 1,0,

2

-1
E[v,,83,(w)] = Trace(r  rl )7 r 5,00 (12)
Thus the unbiased estimator of the dispersion effect
' -1 ' ] -1
Trace (1), ri,) 7 r1a1%iiar _ Trace (roa170a1)" Foa1%0%0a (1%
v v ’
la Oa

is Sga(l) - Sga(O). Again, the dispersion effect (13) is of the form

(3).




3. Characterization of Arrays.

In this section we observe that for some arrays it may not be
2
possible to estimate unbiasedly both o (til""’tiu = 1""'tim) and

2
g (til,-ot,tiu = o,too,tim) for any (til,ooo,ti(u_l),ti(u+l),'oo,tim]v

We present the characterizations of the arrays so that the unbiased

estimation of both 02(ti1""’tiu = 1""’tim) and

2 - ,
g (til"°°’tiu 0""’tim) are possible for at least one
(til""ti(u—l)’ti(u+1)""’tim) and for every u in {1,...,m}.

3.1. Orthogonal Arrays.

We first consider the orthogonal array T (nxm) whose rows
Ei, i=1,.00,n, satisfy
At = ¢ over GF(2), (14)

-1

where A (sxm) is a known matrix of rank s and with two distinct elements

0 and 1, 3_(sxl) is a known vector with at most two distinct elements 0
and 1, GF(2) is the Galois Field with two elements 0 and 1. We have

n = 2"%, Such an orthogonal array is called a type-A orthogonal array
(see Srivastava and Chopra 1973). We write the matrix A in (14) as A =
[24’32""’3m]’ where gu(sxl) is the uth (u = 1,...,m) column of A.
Theorem 2. Consider a run t' = (tl""’tu—l’tu'tu+1""’tm] of the type-

t =1, ¢t and

A orthogonal array T. Then oz(tl,...,tu_l, a u+l"°°’tm)

2 s :
fo! (tl""’cu-l’tu = (Q, tu+l""’tm) are both unbiasedly estimable if and
only {f the uth column of A, {.e., a, is a null vector.
' = = ' =
Proof. We denote t¢,, [tl,...,tu_l,tu 1, tu+l""'tm) and t'(.
(tl""’tu-l’tu = 0, tu+l""’tm)' We have E{l) + E(O) = e, over GF(2),
where e, is the vector with the uth element unity and the other elements

are zero. We can estimate both 02(3%1)) and 02(5%0)] if and only if both
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Eil) and EiO) appear as rows in T. (We know that one of them is already
. 1) L] A = = .
in T.) If both £<1) and E(O) are in T then we have 5(1) AE(O) <
= Y-S = . + = =
We get Ag(l) + AE(O) Agu, iees, ¢ + ¢ a, But, ¢ + ¢ = 2¢ = 0 over
GF(2). Thus the ‘only if' part is true. The 'if' part is trivial. This
completes the proof.
We want to estimat cz(t' ) and az(t' ) for at least one (t t
an [o] e _(1) —(0) 12°°°s y-1"
tu+1""’tm) and for every factor. It follows from Theorem 2 that this
is possible if and only if the matrix A in (14) is a null matrix. Then
the type—A orthogonal array T does not exist. We therefore conclude that
the type-A orthogonal arrays are not useful in the unbiased estimation of

the dispersion effects of the type 02(5%1)) - oZ(EiO)) for every factor

out of m factors. Although the type—A orthogonal arrays are widely used

in quality control studies, we thus observe a serious drawback of such
arrays.
We now consider the orthogonal array T (nxm) whose rows tf,
i =1,...,n, are solutions of
At; = ¢, over GF(2), k = 1,...,f (15
where A (sxm) and Sx (sx1) are known as in (l4), f is also known. We
have n = £ 2%, Such an orthogonal array is called a type-B orthogonal
array (see Srivastava and Chopra 1973).
Example 1. Consider a 2° factorial experiment with 8 runs which are rows
of the matrix T (8x5). We take
X, +x

1 2
Ax = Xy + X, . (16)

Xy ¥ X, * X%g

Thus s = 3. We also take

. T.—n»,:»( Py




N *._ shaunipliton, &
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1 0

E‘l = 0 IS 22 = 1 .
0 0

Thus f = 2. The matrix T is given below.

1 0 0 0 0T

0 0 1 0 0

T = . (17)

0 1 ! I 0

Ll 1 0 1 0

The matrix T in (17) is a type-B orthogonal array of strength 2. We have

n=f207° =2 25-3 = 8, Using this array we are able to estimate ortho-

gonally all main effects under the assumption that 2-factor and higher
order interactions are all zero (Resolution III or Main Effect Plan).

Theorem 3. Consider a run t' = [tl,...,tu_l,tu,t of the type

u+l’°"’tm)

B orthogonal array T satisfying (15). Then oz(tl,...,tu = 1,...,tm)

cz(gil)) and oz(tl,...,tu = 0,000yt ) = °2(£i0)] are both unbiasedly
estimable if and only if the uth (u = 1,...,m) column a, of A in (15) is

= ¢, + & for kk' in {1,000,€}s

« W + - . = =
Proof e have Ly t Loy T &y Over GF(2). Thus AE(I) + AE(O) Ae

a
=u

Eu' Now if E{l) and 5(0) are in T, we take At - nd

=1 "~ &

Hence ay ™ S + Syt Suppose now that 8, = & + [N We have to show

ALy ™ St

that both E(l) and'g(o) are in T. We know that one of E(l) and‘g(o) is

already in T depending whether the uth element tu in t is equal to 1 or
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0. Assuming 541) is in T, we show that E(O) is also in T. It can be
seen that

Accgy = Aley - tay) =2y~ o = s
Thus E(O) is also in T. The rest is clear. This completes that proof.
We observe that if a type-B orthogonal array satisfies the condition of
Theorem 3, then the type-B orthogonal array whose runs are solutions of

At

ol | - l- Ek’ k = 1,0'o,f, i= l,nac,n, i' = (1’1,0001), also Satisfies

the condition of Theorem 3.

Example 2. We again consider the Example 1. The matrix A is given

below.

Note that none of the columns in A can be expressed as the sum of <1 and

c Thus for the type-B orthogonal array T in (17), the condition in

o
Theorem 3 does not hold. We now consider a 2° factorial experiment with
16 runs. We take Ax as in (16), £ = 4, < and &y as in Example 1 and

0 0

The matrix T (16x5) consists of all runs in (17) and the following 8

additional runs.
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§

The matrix T (16x5) is a type-B orthogonal array of strength 1 but not of
strength 2. However, it is nearly an orthogonal array of strength 2.

The condition of Theorem 3 holds for T (16x5). Hence GZLEEI)) and
°2(£io)) are both unbiasedly estimable for a (tl""’tu-l’tu+1""’tm)
and for every chosen factor. We thus observe that we need more rumns in
the array to satisfy the condition of Theorem 3 than to satisfy the con-
dition for the orthogonal array of strength 2. We need even more than 16
runs to satisfy both the condition of Theorem 3 and the condition for the
orthogonal array of strength 2.

3.2 Balanced Arrays (B-arrays) of Full Strength.

We now congider a B-array T (nxm)} of full strength with n distinct
runs (see Srivastava and Chopra 1973). We first describe this B-array.
Let §; be the set of all (1xm) vectors having i elements equal to 1 and
the other (m-i) elements equal to 0, i = 0,1,...,ms The sets Si,
i=0, l,...,m, appear as rows in T with frequencies Ai, where

Ai =Q0or 1, i =0, l,eee,me Clearly the number of vectors in S

n
and n = £ A[(7).
P Y
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Theorem 4. Consider a run t' = (t1'°"’tu—1’tu’tu+l""’tm] of a B-array

of full strength. Suppose that 1 is appearing w times and O is appearing
(m-w) times in t'. Then oz(tl,...,tu = 1,...,tm) = OZLEEI)) and
oz(tl,...,tu = 0,...,tm] = GZ(EiO)) are both unbiasedly estimable if and
only if the runs in Sw and Sw+x’ where x = 1 {f t, - 0 and x = -1 if

t, = 1, appear as rows in T.

Proof. Suppose t = E{l)' Then the runs in Sw appear as rows in T. It
now follows from the B-array of full strength that E(O) will appear as a
row in T if and only if the runs in sw-l appear as rows in T. The rest

is clear. This completes the proof.

When Sw and S = ] or -1, are present in T, we can estimate un-

wHx '’ X
biasedly both o2{t# tx ek o= 1tk %) and o°(t £*
y 1**°*> u=-1""u *Tu+l*t T""’ u-1’

* = * * = see
'P tu O,tu+1,...,tm) for every factor u(u 1, ,m) and for some

4 [t?,...,t:_l,t:+1,...,t;). If the runs in T (nxm), n = 1 + m, are the
runs in S0 and S1 (or, equivalently, Sm and Sm-l) then T is a resolution

III plan and the condition of Theorem 4 holds. If the runs in T (nxm),

n=1+mn+ (m), are the runs in S.,, S, and S, (or, equivalently, S ,
2 0 1 2 m
& sm—l and Sm—Z) then T {s a resolution V plan and the condition of

Theorem 4 holds for every factor. In view of the unbiased estimation of

2 2
the dispersion effect ¢ (EZI)) -0 (LZO)]’ B-arrays of full strength are

very good having smaller number of runs. The resolution IV plan where

the runs in T (nxm), n = 2 + 2m, are the runs 1in SO’ Sm' S, and Sm_1 is

resolution V plus one plan where the runs in T (nxm), n = 2 + 2m + [m),

good in terms of estimating both location and dispersion effects. The
t 2
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are the runs in 595 S $;» Sy-; and S, (see Srivastava and Ghosh (1976))

m’

is good in terms of estimating both location and dispersion effects.

4. Final Remarks

In the model (1-2) and throughout the paper, we present the
dispersions in the general form. A special dispersion nmodel assumes the
additive form Gz(tl,...,tm) = of(tl)+...+0;(tm]. There are 2m dispersion
parameters 05(1) and 03(0), u = 1l,.e.,m under the additive model. The
additive form is implicitly assumed in the orthogonal array experimenta-
tions (see Taguchi and Wu 1985). The additivity in the orthogomal array
experimentations simplifies the situations. For example, we have for the
uth (u = 1,..0,m) factor, o(1) = o%(0) = o’(t},,) - o*(tigy) = oatD) -
oi(O). The strengths of the orthogonal arrays are assumed to be 2 or
more. Under the additive model, the unbiased estimation of the dis-
persion effects oj(l) - 05(0), u=1,ee.,m is always possible in the

orthogonal array experimentations.
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